Aller au menu Aller au contenu
Design & Organisation
High level education
Design & Organisation
Design & Organisation

> Studies > Engineering degree

Machine Learning - 4GMC14B1

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In
  • Number of hours

    • Lectures : 9.0
    • Tutorials : 6.0
    • Laboratory works : -
    • Projects : -
    • Internship : -
    • Written tests : 1.5
    ECTS : 1.5

Goals

The course introduces the first tools for machine learning processing of quantitative and qualitative data.
Students will learn how to manipulate data in order to prepare it for analysis.
The analysis methods that will be learned allow for automatic classification; construction of predictive models; evaluation of the performance of the methods; diagnosis of the limits of the applications of these methods

Content

.1 Issues in automatic classification
supervised vs unsupervised methods; some unsupervised methods (k-means, dendrograms).
.2 Overview of supervised methods
decision tree, naive bayesian, logistic, SVM, neurons, decision rules....
Implement and question the qualities and defects of each method.
.3 Evaluation of methods.
Performance criteria (quality vs complexity; predictions/black boxes vs knowledge/white boxes)
cross-validation (of predictions, parameters...).
.4 Interests and limitations
Data selection bias, model confirmation bias (cf. C. O'Donnell), etc.
Micro-workers of clicks (AmazonTurk, FB moderators, apple "spies", etc).

Prerequisites

Students will have taken and validated the following courses: Probability and Statistics; Programming with R, Programming with Python

Tests

This weighting is compatible with the organization of distance learning courses and exams

At least 2 marks for practical work or continuous assessment: TP1 and TP2
One exam grade : E1

Grade = 0.4*((TP1+TP2)/2) + 0.6 * E1

Cette pondération est compatible avec une organisation des enseignements et des examens en distanciel

Note de contrôle continu : TP (basée sur au moins 2 notes TP1 et TP2)
Note d'examen individuelle : EX
Note = 0.4*TP + 0.6*EX

Calendar

The course exists in the following branches:

  • Curriculum - Engineer student Master SCM - Semester 7
  • Curriculum - Engineer student Master PD - Semester 7
see the course schedule for 2022-2023

Additional Information

Course ID : 4GMC14B1
Course language(s): FR

You can find this course among all other courses.

Bibliography

J.H. McDonald, (2009), Handbook of Biological Statistics, Sparky House Publishing.
I.H. Witten et E. Frank, (2005), DataMining – Practical machine learning tools and technics, Elsevier.
Stéphane Tufféry, (2005), Datamining et statistique Décisionnelle – L’intelligence dans les bases de données, Ed. Technip.
Cornillon et al., (2008), Statistiques avec R, Presses Universitaires de Rennes.
Gaël Millot, (2011), Comprendre et réaliser les tests statistiques à l'aide de R, 2ème édition, Editions De Boeck, 767 pages
Hill, Griffiths and Lim, (2011), Principles of Econometrics, Fourth Edition

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In

Date of update June 14, 2021

Université Grenoble Alpes